If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-104x+165=0
a = 12; b = -104; c = +165;
Δ = b2-4ac
Δ = -1042-4·12·165
Δ = 2896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2896}=\sqrt{16*181}=\sqrt{16}*\sqrt{181}=4\sqrt{181}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-104)-4\sqrt{181}}{2*12}=\frac{104-4\sqrt{181}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-104)+4\sqrt{181}}{2*12}=\frac{104+4\sqrt{181}}{24} $
| -3x-2/0=92+11x | | (8-5i)^2+(8-5i)^2=0 | | 4.2+10m=7.38 | | 52-9x=-124 | | 7q=8q+10 | | 3(x+)-4=3(x-5) | | (2x-3)+(x)+(5x+7)=180 | | 24x85=0 | | 2(17x-28)=6x+21 | | -24-11=-6(4x+1) | | 33x+98=33x+9 | | -3=b+9 | | 2×17x-28=6x+21 | | y=11.4+0.5+9.9+0.6 | | 6f+10=8f-10+8f | | 10+2y=31 | | 18x-18=16x | | 9.12=2.4y | | 2x-5(x-5)=-4+2x+14 | | 1/2(6x+5)=x | | s(1)=112+96(1)-16(1)^2 | | 8p-10=62 | | 7x+25=-65 | | 1x+10=1x+20 | | -22=b-12 | | 7.4x-12.9=-99 | | 2-8n=-9n-7 | | s(2)=112+96(2)-16(2)^2 | | 3x+6/7x-4=-1/2 | | -99=-8k | | 32=u/5+9 | | 16/10=n+2 |